What is a Geothermal Heat Pump?

Geothermal heat pump or ground source heat pump (GSHP) is a central heating and/or cooling system that pumps heat to or from the ground. It uses the earth as a heat source (in the winter) or a heat sink (in the summer). This design takes advantage of the moderate temperatures in the ground to boost efficiency and reduce the operational costs of heating and cooling systems, and may be combined with solar heating to form a geosolar system with even greater efficiency. Geothermal heat pumps are also known by a variety of other names, including geoexchange, earth-coupled, earth energy or water-source heat pumps. The engineering and scientific communities prefer the terms “geoexchange” or “ground source heat pumps” because geothermal power traditionally refers to heat originating from deep in the Earth’s mantle. Ground source heat pumps harvest a combination of geothermal power and heat from the sun when heating, but work against these heat sources when used for air conditioning.

Like a refrigerator or air conditioner, these systems use a heat pump to force the transfer of heat. Heat pumps can transfer heat from a cool space to a warm space, against the natural direction of flow, or they can enhance the natural flow of heat from a warm area to a cool one. The core of the heat pump is a loop of refrigerant pumped through a vapor-compression refrigeration cycle that moves heat. Heat pumps are always more efficient at heating than pure electric heaters, even when extracting heat from cold winter air. But unlike an air-source heat pump, which transfers heat to or from the outside air, a ground source heat pump exchanges heat with the ground. This is much more energy-efficient because underground temperatures are more stable than air temperatures through the year. Seasonal variations drop off with depth and disappear below seven meters due to thermal inertia. Like a cave, the shallow ground temperature is warmer than the air above during the winter and cooler than the air in the summer. A ground source heat pump extracts ground heat in the winter (for heating) and transfers heat back into the ground in the summer (for cooling). Some systems are designed to operate in one mode only, heating or cooling, depending on climate.

The setup costs are higher than for conventional systems, but the difference is usually returned in energy savings in 3 to 10 years. System life is estimated at 25 years for inside components and 50+ years for the ground loop. As of 2004, there are over a million units installed worldwide providing 12 GW of thermal capacity, with an annual growth rate of 10%. If deployed on a large scale, this technology may help alleviate energy costs and global warming.